Renewable Energy Powered Electric Transport

Options for Rarotonga, Cook Islands

SCHOOL OF PHOTOVOLTAIC AND RENEWABLE ENERGY ENGINEERING, UNSW, SYDNEY 2052 AUSTRALIA

Yijie (Jacky) Zhong Supervisor: Han Duo

Background

- Rarotonga is completely dependent on import fuels for transport and the majority of electricity generation on the island is using large diesel plants
- Problem: Fuel supply risks and price fluctuations for the transport and electricity sector

Objective

- Investigate the potentials of using electric vehicles (EVs) and electric bikes (E-Bikes) as the main forms of transport options on Rarotonga
- Identify the cost effectiveness of using solar energy to power the electric transport options

Methodology

- 1. Investigate suitable electric transport technologies to be used on the island
- 2. Investigate the electricity sector and relevant renewable energy policies
- Data collection and feasibility studies 3.
- 4. Result analysis

Key Findings

EV Nissan Leaf is not feasible in comparison to Toyota Corolla without a 2kW solar system and grid incentives (see Table 1)

Capital Cost Comparison for Vehicle Transports

Annual Cost Comparison for Vehicle Transports

Figure 1: Rarotonga, Cook Islands

Table 1: Net present value for EV scenarios

EV Nissan

	EV Nissan Leaf	EV and 2kW PV	EV with 2kW PV and Battery
Net Present Value	-\$7445	\$14745	-\$1258
Feasible?	N	Y	N

E-Bike Easy Motion is feasible in comparison to the motor bike Yamaha Cygnus in all scenarios (see Table 2)

Table 2: Net present value for E-Bike scenarios E-Bike Easy E-Bike and E-Bike with

	Motion	2kW PV	2kW PV and Battery
Net Present Value	\$3052	\$25241	\$9239
Feasible?	Y	Y	Y

• The change of future petrol prices impact most on the NPV of EV, while the NPV of E-bike is most sensitive to the change of capital and maintenance costs

Figure 8: EV Nissan Leaf

Figure 9: Toyota Corolla

Figure 10: E-Bike Easy Motion

Figure 11: Yamaha Cygnus

Conclusion

- Network incentive policy on Rarotonga made household solar systems (less than 2kW) very affordable
- Electric transport technologies use electricity as the main fuel source, thus they are also attractive by using in compliment with a household solar system
- Electric transport technologies effectively reduce the fuel supply risk as well as the level of carbon emissions on Rarotonga

UNDERGRADUATE THESIS OPEN DAY, SESSION 2 2015